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Charge Transfer in Mixed-valence Solids. Part V I I P  Contribution of 
Valence Delocalisation to the Ferromagnetism of Prussian Blue 
By Bryan Mayoh and Peter Day," University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, 

The contribution of mixed-valence electron delocalisation to the ferromagnetic exchange between the iron (111)  
ions in Prussian Blue {Fe1"4[Fe11(CN)6],*1 4H,O) has been estimated theoretically. Agreement between the 
calculated and observed values of the Curie temperature is quite good. 

Oxford OX1 3QR 

PRUSSIAN BLUE, Fe111,[Fe11(CN),],*14H,0, is an interest- 
ing compound not only because it is one of the classical 
examples of a Class I1 2 mixed-valence compound whose 
physical properties have been very comprehensively 
investigated but also because at  low temperatures the 
iron(rI1) spins order ferroniagnetically. Ionic transition- 
metal compounds, especially co-ordination complexes, 
which order as three-dimensional ferromagnets, are 
extremely rare,3 so any insight which can be gained into 
the mechanism of the exchange interaction in Prussian 
Blue would be valuable. 
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The first report on the low-temperature magnetic 
properties of Prussian Blue gave the Curie temperature 
as 3.5 K, and the Mossbauer spectrum recorded at  1.3 K 
certainly shows the magnetic hyperfine structure 
expected of a ferromagnet. However, in neither of these 
studies was the chemical composition of Prussian Blue 
particularly well characterised, especially with regard to 
the potassium content of the samples. More recently, 
Ludi and his co-workers6 prepared and analysed single 
crystals of Prussian Blue. They verified that the 
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limiting formula was FeI1I4[FeI1( CN),],*14H20 and 
determined the crystal structure by single-crystal X-ray 
diffraction. For their samples, powder neutron diffrac- 
tion’ suggested that the Curie temperature was ca. 
10 K and indeed, at 4.2 K, the Mossbauer spectrum* 
showed fully developed magnetic hyperfine structure and 
the magnetic circular dichroism saturated in very small 
applied fields. The existence of these more recent data 
make it worth examining the magnetic-ordering mechan- 
ism in more detail. 

Most mixed-valence compounds which order as ferro- 
magnets, for example the well known lo series of mangan- 
ites(II1,Iv) such as La,Srl-,MnO,, are also metallic 
conductors. In that case the ferromagnetism arises 
from the ‘ double-exchange ’ mechanism first proposed 
by Zener: l1 coupling occurs between the unpaired 
electron spins localised on the metal ions via the de- 
localised conduction electrons. A perturbation pro- 
cedure similar to the one we used earlier to calculate 
valence-delocalisation coefficients would then serve to 
derive the relevant coupling integrals. However, the 
ferromagnetism of Prussian Blue cannot come from this 
mechanism because, being a class I1 mixed-valence 
compound, it is not a metal, but a high-resistance semi- 
conductor. Furthermore, in the cubic lattice the high- 
spin iron(II1) ions are separated along each axis of the 
unit cell by low-spin diamagnetic FeII, and are thus no 
less than 10.16 A apart. Consequently the basic 
mechanism of the exchange interaction must lie in what 
we ~ 1 2  have called ‘ valence delocalisation ’ in the 
ground state between the FeII and Fen1. 

In essence the mechanism we envisage relies on the 
partial delocalisation of electrons formally occupying tzS 
orbitals on FeII on to neighbouring high-spin iron(m) 
sites. Since each iron(II1) site may only accept electron 
density of one particular spin, because the t~ and eg 
orbitals are both exactly half occupied, a t~ electron with 
a spin originating on FeII may spend a larger fraction of 
its time on iron(@ sites than one of p spin. Some of 
the coulomb- and exchange-repulsion terms are sensitive 
to differences in the extent of delocalisation of a and p 
spins. The effect of this is that it is energetically more 
favourable to delocalise only one type of spin (either a 
or p) from FeII to FeIII. In the crystal, however, each 
FeII is surrounded by six equivalent FeIII, over which 
the spin density originating on the central FeII must 
therefore be correlated. The ferromagnetic coupling 
energy is the difference between the energy per iron(r1) 
centre when the spins of the neighbouring FeIII are 
ordered parallel to one another, compared to the energy 
when they are arranged randomly. It is this energy 
difference which we shall calculate. 

THEORY 
Spin Orientations and Wavefunctions.-If the spins of the 

six FeIII around an iron(11) centre are randomly oriented 
7 H. J. Buser, A. Ludi, P. Fischer, T. Studach, andB. W. Dale, 

2. phys. Chem. (Frankfurt), 1974, 92, 354. 
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the statistical weights of all the possible spin-coupling 
schemes are respectively 1/64 for 6a or 6p, 6/64 for 5a + l p  
or 5p + la, 15/64 for 4a + 213 or 413 + 2a, and 20/64 for 
3a + 3p. A general Slater-determinant wavefunction for 
the optical electrons, which we assume to be FeII t2g, in the 
ground state is as in equation (1) where i labels the coupling 
case and tna*fi take the forms (2a) and (2b) where tc are t,, 

Y G  = 1 tl*atliSt2gat2*Bt3,at~~~1 (1) 

( 2 4  
(2b) 

tna = [(l - kC2)t(J2 + kC2#(tN)2)]* 

tnB = [(I - jc2)t$ + jc2#(tN)2]+ 
orbitals on FeII at the carbon ends of the cyanide groups, 
+ ( t ~ )  is an appropriate combination of t2g orbitals on FeIII 
a t  the nitrogen ends of the cyanides, and k / ( k  + j )  is the 
fraction of the delocalised electron density c2 which has a 
spin [ j / ( k  + j) is the similar fraction for p spin], and k + j 
= 1. In writing equations (2a) and (2b) we have made 
use of the small degree of overlap between to and $ ( t ~ ) ,  
i.e. (3). In the various spin-coupling combinations acces- 

tna = (1 - kc2)*t0 + ( k G 2 ) k + ( t N )  (3) 
sible to the six FeIII around our reference FeI1 the appropri- 
ate values of k and j are as in equations (4)-(10). In 

6a: k = O ,  j =  1 (4) 
6p: k =  1, j = O  ( 5 )  

5a + l a :  k = l J 6 , j  = 5/6 (6) 

5p + l u :  k = 516, j = 116 (7) 

4a + 213: k = 113, j = 2/3 (8) 
4p + 2a : k = 213, j = 113 (9) 

3a + 3E3 : k = 112, j = 112 (10) 
order to write the wavefunctions of the different coupling 
combinations in the form of Slater determinants, i t  is now 
convenient to rewrite t,Q*b as in (1 1) and (12) where +(tc , tN)  = 

tnQ = [to2 - K C 2 + ( t C , h )  21* 
t,B = [to2 - jc2+(tC,tN)g+ 

(11) 
(12) 

[to2 - $ ( t ~ ) q f ,  again assuming small overlap between to and 

Since for our purposes the energies of ( x  - 6)a + xp and 
xu + (6 - x)p are the same, we shall write only one 
component of each, for example k = 1, j = 0. Then 
substituting into equation (l), we have: 

N N )  * 

Case (a)  ( ~ c c ,  6p) : 
Y G a  = I[tc2 - G2+(tC,tN)2]l+Q tc1B[tc2 - c”(tc,trJ)2]fa- 

tC2S[tC2 -c ’~( tC, tN)2]3’a tC3S1 (13) 

Case (b) (5a + l p ,  513 + la ) :  

Tab = 
[ [tC2 - $$2+(tc,ta)2-Jl*a[tc2 - $ ~ ~ + ( t ~ , t ~ ) ~ ] ~ f f i  etc.1 (14) 

Case (G) (4a + Zp, 413 + 2a): 

T Q c  = 
I[ta2 - &2+(tc,t~)2]1~a[t~2 - s ~ ~ + ( t ~ , t ~ ) ~ ] ~ a S  etc.1 (15) 

YM = l[tc2 - +c2+(tc,t~)]l*a[tc2 - ~ ~ ~ + ( t ~ , t ~ ) ~ ] ~ ) B e t c . l  (IS) 

599. 

Case ( d )  (3a + 3p) : 

10 G. H. Jonker and J. H. van Santen, Physica, 1950, 16, 337. 
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Ferromagnetic Coupling Energy.-In order to find the 
ferromagnetic coupling energy the energies of the four 
cases (a)-(d) must be compared, that is, the values of (17) 
for i = a, b, c, d, and d. Energy differences between the 

E Q i  = ( ~ G i l ~ I y " c t i >  (17) 

various states i arise from differences in the coulomb- and ex- 
change-repulsion integrals { tnatna Ie2/r12 I tnbtnb), <t,atpale2/r12 I - 
tnaiPa>, and { t ~ ~ t ~ ~ } e 2 / y l 2 1 t ~ ~ t ~ b > .  In fact, if we define equations 
(18) and (19), we find the energy differences (20)-(22) 

J11 = <$2(~c,tN)11~2/~121+2(tC.N)1) (18) 

K 1 2  = ($(b tN) I$(~CI tN) 2 le2/r1zlfi(tC,tN> I+ ( tCs tN)  2) ( 9> 
between the different coupling cases (cz)-(d). The ferro- 

Ecta - ECJb = (15c4/36)Jli + (30c4/36)K12 (20) 

EG, - EQ, = (6c4/9)J11 + (12c4/9)K12 

E G ~  - Ec+d = (3c4/4)Jii + (6c4/4)K12 

(21) 

(22) 

magnetic coupling energy depends not only on these energy 
differences but also on the weighting to be given to each 
case. Relative to case (a)  the weighting factor zvb of (b) 
is 12/64, of (c) is 30/64, and of (d) is 20/64. Then the total 
ferromagnetic coupling energy resulting from the mixed- 
valence interaction is (23). 

E f m  = 2 ( E G a  - EGi)wi = (1/8)(5J11 + 10K12)c4 (23) 
i- b,c,d 

Evalzaation of Jll and K,,.-The next step in calculating 
Substituting into 

In order 
Efm is to evaluate Jll and K,, explicitly. 
equations (18) and (19) we obtain (24) and (25). 

J11 = QC12 - $l(tN)21~2/~121~C12 - $l(M2) (24) 

K12 = ([h2 - fii(tN)21'[tC22 - fiz(tN)2]~]e2/r121[tC~2 - fi1(tN)21*- 

to expand these expressions in terms of single-centre FeII 
and FeIII tzs functions we need to define the axis of the FeII- 
(CN),FeIII, cluster. Fortunately an axis definition is 
already available from our previous paper on the optical 
spectrum of Prussian Blue. Using the labels we used in 
that paper, and arbitrarily fixing tc, as d, and tc, as d,,, 
we obtain equations (26) and (27). In order to simplify 

[tC22 - $z(tN)21*) (25) 

$ I ( ~ N )  = (1/2)[dxy9 f dxys + dxy, + dqbl (26) 

+z(tN) = (1/2)[dZZl + dz, + dZZ& + dZ2J (27) 

the expressions for J,, and K12, all the interactions between 
d,, on FeT1 and the dzyi on the surrounding FeIII are general- 
ised in terms of dxy,. All the Fer1I-Fe1II interactions are 
expressed in terms of either one-centre (d&*), adjacent two- 
centre (di-di; i = 1, j = 2), or distant two-centre (d,-dj; 
i = 1, j = 6) interactions. The resulting expressions are 
(28) and (29). In deriving these expressions we have also 

Jii = <dzydzyJe2/r121dzydzy> - 2(d~d*le2/ri,]d~y,d~~~> 
+ ( 1/41 [<d,,dq* le2/r121 dz,*d,*) + 2(d,,dZY, 1 e"r12- 

IdZY*dW,) -t <dXY,dZY, I e2/y12 IdX,,dXY*)l (28) 

IdZY1dZZ,) + <dXYldazl le2/~12ld*y,~zz,)l (29) 
K12 = ~ ~ z y d ~ z l ~ 2 / ~ 1 2 1 ~ ~ Y ~ x z )  + (W) [{dZy,dm1le2/r12- 

* 1 eV w 1.60 x 10-lB J. 
l3 R. G. Parr, ' Quantum Theory of Molecular Electronic 

Structure,' Benjamin, New York, 1964. 

used the Mulliken approximation to set all other terms of 
the type (didjId,dj>, where di and dj are on different centres, 
equal to zero. 

Numerical Estimates of J,, and Kl,.-The final stage in 
our calculation of Efm is to estimate some numerical magni- 
tudes for the various coulomb- and exchange-repulsion 
integrals which appear in (28) and (29). As our aim is 
only to obtain a rough idea of the magnitudes of the various 
terms which enter into the magnetic coupling, we used the 
point-charge approximation Jij = 14.4/R,j, where Rq is the 
distance between the two centres, to estimate the two- 
centre repulsion integrals between orbitals localised on 
different iron(II1) centres. The one-centre FeII and one- 
centre FeTII coulomb integrals correspond to the yll terms 
of Pariser-Parr-Pople ZDO-MO theory,13 while the one- 
centre exchange integrals are assumed to be proportional 
to the Y , ~  as in the INDO approxirnati~n.'~ The two- 
centre FeIII-FeIII exchange integral is set equal to zero. 
With these approximations, we obtain (30) and (3 1) , k being 
the proportionality constant just mentioned.* 

JZl = yll(FelI) + (1/4)yll(Fe1IL) - 4.30 eV (30) 

K 1 2  = hyll(FeI') + (1/8)hy1l(FeIu) (31) 

Values of y,, may of course be obtained from atomic 
Hartree-Fock calculations. However, it is well known 
that when they are used in molecular-orbital (m.0.) calcul- 
ations they usually predict singlet-triplet separations much 
greater than those observed. Consequently, following 
other semiempirical m.0. calculations l 3  we use the energy 
of the ' Pariser disproportionation reaction ' to find yll. As 
a function of the charge q on a metal ion, y is given by the 
difference between two valence-orbital ionisation potentials 

~ ( q )  = VOIP(q - 1) - VOIP(Q) (32) 

as in (32). Published tabulations l5 of VOIP(q) then lead 
to estimates for both yl1(Fe1I) and yll(FelI1) of 12.4 eV. 
Finally Watson's self-consistent-field calculations of yda, 
ydd'; and K&y for neutral atoms of the first transition series 
indicate that the ratio of ydd to Kddp (i.e. the proportionality 
factor k )  is 0.0388. When the values of all these parameters 
are substituted into (30) and (31) the resulting estimates of 
Jll and K,, are 11.2 and 0.54 eV respectively. The ferro- 
magnetic coupling energy Ef ,  from (23) is therefore equal 
to 7 . 6 7 5 ~ ~  eV. 

RESULTS AND DISCUSSION 

Calculation of the Curie Temperature.--In order to 
relate the magnitude of Efm which we have calculated to 
the observed Curie temperature we assume that Efm - 
kBTc, from which T ,  is predicted to be (8.9 x 104)c4 K. 
The coefficient c, which we have called l 9 l 2  the ' valence 
delocalisation coefficient,' can be approached in one of 
two ways. Either one can estimate it from the intensity 
of the mixed-valence absorption band or, for cases such 
as Prussian Blue, where the two metal ions of differing 
valency are bridged by an intervening ligand, it can be 
calculated from a perturbation model, mixing FeII-CN 
and CN+FeIII local charge-transfer states into the 
ground state. In our earlier paper on the perturbation 

l4 J. A. Pople, D. P. Santry, and G. A. Segal, J .  Chem. Phys., 

l6 H. Basch, A. Viste, and H. B. Gray, Theov. Chim. Acta, 1965, 
1965,43, 5129. 

3, 458. 
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model for valence delocalisation we used Prussian Blue 
as a test case, and obtained estimates of the ground- 
state delocalisation coefficient in both ways, for com- 
parison : that estimated from the intensity of the mixed- 
valence band was 0.106, while the estimate based on the 
perturbation calculation was 0.083. The former value 
leads to a calculated Curie temperature of 11.2 K and 
and the latter to 6.6 K. 

A number of comments can be made on this result. 
First, the fact that the iron(II1) ions in Prussian Blue are 
so far apart, and yet magnetic ordering is found at  a 
modestly accessible temperature, strongly implicates the 
intervening diamagnetic iron(11) ions in the interaction 
process. Secondly, that the interaction should be ferro- 
magnetic is highly unusual, and the fact that it occurs 
in a mixed-valence compound suggests that it is the 
mixed-valence interaction which provides the dominant 
exchange path. The calculations described above give 
strong support to both these hypotheses. We have 
demonstrated not only that the mixed-valence delocalis- 
ation mechanism indeed predicts ferromagnetic coupling 
but, further, that the extent of ground-state valence de- 
localisation as estimated from the optical spectrum or a 
perturbation calculation leads to a calculated Curie 
temperature very close to that observed. Of course, the 
level of agreement between the calculated and observed 
Curie temperatures is very remarkable, especially when 

one remembers that in our model To is proportional to 
c4. Obviously it would be very interesting to examine 
the low-temperature magnetic properties of related 
compounds, such as the ruthenium and osmium ana- 
logues of Prussian Blue, and other heavy-metal ferro- 
and ferri-cyanides in which interionic charge-transfer 
states, though not strictly of the mixed-valence type, 
might make an important contribution to the exchange 
mechanism. 

Finally it is worth mentioning that no direct correlation 
between the calculated magnetic interaction energy and 
any electrical-conductivity properties is to be expected 
in Prussian Blue and related class I1 mixed-valence 
compounds. In this kind of compound conduction is 
limited by electron trapping as a result of lattice polaris- 
ation. The diffusion coefficient in the hopping model 
depends on voexp( -AG/kT),  where vo is the frequency of 
the lattice mode and AG the work which must be done 
to bring the energies of the carbon-hole and nitrogen- 
hole sites to equivalence, so that electron transfer can 
take place. 
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